Integrating Legacy Subsystem Components into an Object-Oriented Model

P G Neil, K P Bright and R A Sherlock
Dairying Research Corperation
Private Bag 3123
Hamilton, New Zealand

Abstract: Object-oriented {O0) programming languages allow more manageable modelling of complex systems by facilitating
the independent development of sub-components. Three methods of incorporating existing procedural code components into an
OO0 mode! are described. Mixed language programming allows the building of & program in which the source code is in more
than one language. Procedural languages that are able to be inteprated into an O30 model using this method are dependant upon
the procedural linker and OO language used. Mixed language programming alone is normaily unsuitable for integrating legacy
components into an 00 model due to the potential loss of global data storage and the restricted combinations of programming
languages that can be utilised. Recompiling legacy source-code inte a dynamic link library (DLL) allows integration into an OO
model through loading and accessing DLL’s at runtime. Functionality must be contained within routines, procedures or functions,
as these form entry points into DLL's. Recompiling a legacy model 2s a DLL is often an achievable option but may require
‘wrapping’ using mixed language techniques. Default interprocess communication {IPC} mechanisms exist in host windowing
operating systems which enable incorporation of models onty available as executable DOS or Windows programs, or models that
have been developed in proprietary modelting environments. IPC mechanisms can zlso be introduced into model components
available as source-code to allow more direct integration with an overall OO mode! struchsze.

1. INTRODUCTION

When using an OO programming language to model a
Computer models that attempt to represent complex real- complex real-world system, real sub-components of the
world systems to a level providing a useful description and system should form the foundation for individual classes
accurate predictions commonly require the development of [Fishwick, 1995]. Focused development is therefore
farge, complex computer programs. Procedural promoted through the development and refinement of model
programming languages are not designed to easily facilitate components representative of real system entities. The
the development of large complex programs [Meyer, 19971 segregation of 2 whole system model into classes also better
By contrast object oriented (00) programming languages facilitates muiti-contributor involvement as people with the
provide design concepts to facilitate development of large relevant knowledge and interest in a system component can
programs through allowing the isolated development and develop the corresponding class.

prototyping of program units.
Following the decomposition of the design of a large system

An OO program is constructed by developing isolated model into classes, much of the functionality reguired by
program units called classes (for definition of a class see same of the classes may be present in existing models. In
Booch, [19%4]) which encapsulase both variable declarations many cases these will have been written in a procedural
and methods. Because classes encapsulate both methods language. Reconstructing this functionality in a class in the
and variables they can be considered functionally similar to 00 programming environment is time consummg, error
small procedural programs (Figure 1) Classes act as a prone and in some cases net readily achievable due to
template for the creation of many instances [Booch, 1594] differences in the available staternents and functions. [n
which is similar to the creation of many application most cases, however, it is possible to directly integrate
instances [Microsoft, 1995b] from a single executable file. exisiing component models inte an OO model with little or
The dynamic creation of instances from different classes and no re-coding. Integration technigues available for
the subsequent co-ordination by discrete messaging 15 the incorporating legacy models are described in this paper. In
basis of an OO program’s execution. This allows the choosing an integration methodology it is important that the
flexible building and linking of instances at runtime, legacy model can be incorporated in the GO model 1o
providing a simulaton environment which easily hehave as a frue object in terms of messaging and data
accommodates the modelling of scenarios involving encapsulation. Two actual implementations where
different combinations and numbers of real system enfities. integration procedures allowed legacy models to behave as
The petential to describe individual system entilies promotes rue objects will be explained in detail.

the ability of & computer model to predict and describe
events more closely aligned with those oceurring n the real-
world system [Plant and Stone, 19911

1133

Class

i Procedural Program

Class Variables:
Vart
Vard

Instance Variables:
vard
vard

Methods;
abethod
ftempVar|

“some opersation”

Agelf,

/*Global Variables*/
int i;

ficat £;

/*Functions»*/
aFunctioni})

{
double d;

/*some operaticon*/

return{};

}
Application
: Instances
instances

| (Processes

Figure 1: Classes are similar to executable procedural programs in the following ways: global variables (i, f) in a procedural
program are the functional equivalent to instance variables (var3, vard) defined in a class. Variables declared inside functions {d)
are functionally equivalent to temporary variables (tempVar) declared inside a method in a class. Executable programs can act as
a template for many application instances, similarly a class acts a5 a template for the creation of many true class instances.

2. INTEGRATION 5TRATEGIES

1.1 Mlixed Language Programming

Mixed language programming is the building of an
executable program in which the source code has been
written i mere than one programming language. This
includes the building of both procedural/procedural and
OO/procedural mixed language programs. The potential for
building OO/procedural programs provides a mechanism by
which the source code of legacy component models can be
directly incorporated into an OO program. For the purposes

1134

of the rest of this paper, functions, procedures and routines
will generically be called routines. Also, because of a lack of
accepted generic OO terminology, we will use Smalitalk 80
naming conventions [Goldberg and Robson, 1989] for
ilustrative purposes.

The inclusion of procedural source code into an QO program
using this approach involves developing a class which calls
routines from the legacy code unit to implement its methods.
The functionality of the legacy code unit must therefore be
directly accessible through callable routines. During the
building of & mixed language program some global variable
storage, such as COMMON block variable declarations

outside functions in FORTRAN, are lost. If global variables
are lost during the build process these must be re-introduced
either as a data structure in the legacy code or through re-
direction into a data structure in the OO language.

When creating a mixed language class any global variables
declared in the legacy code exhibit class variable behaviour
in instances of that class {Figure 2). Instances can therefore
only access one common set of variables from the legacy
component of the class rather than a unique sei for every
instance. Under this scenario the legacy model does not
exhibit true instance behaviour in terms of data encapsulation
because more than one instance can modify the global
variables in the legacy medel. This could lead fo
unpredictable and erroneous resulis if more than one instance
of this class is used. Legacy global variable storage can be
re-directed into instance variable data structures in an OO0
class, thus enabling true instance creation. Each instance
then has its own encapsulated set of the legacy global
variables.

Mixed Language Class

90 Code s
Legacy Model
Class Variables iProcedyral}
-Cvard
-Fvart H
instance Variables -PVarz]
-vart !
warg S |
kY
/ \
/ S
Instancet / b Instance2 instance....

!
-Pvar? /tF’Va rN

_Pyar? -PVarz y
-(vard -Ovar3)

wvart ;Common \ vart
/o wal
-varz -varz
Instances
Unique fo Linique to
instance instance

Figure 2. Variables existing in the legacy model (PVari,
PVar?} component of a mixed-langnage class exhibit class
variable behaviour in the subsequent instances,

The building of 2 mixed language program is dependent upen
hoth the procedural linker and the OO language used. For
example the Microsoft FORTRAN linker [Microsoft, 1993a]
allows the building of Basic/FORTRAN,
MASM/FORTRAN, CO/FORTRAN procedural mixed
language programs. The only GQ/procedural mixed
language program possible with the Microsoft FORTRAN
linker i3 CHHFORTRAN. The VisualWorks Smalltalk
mixed language linker {ParcPlace-Digitalk, 1995} by contrast
only allows the building of Smalitall/C mixed language
programs. The ability to use mixed language programming
to incorporate legacy models into an OO framework is
therefore restricted to a discrete subset of OO/procedural
fanguage options,

1135

2.2 Dynamic Link Libraries

Dynamic linking provides & way for an executable program
to call a routine that is not part of its code. The executable
code for this routine is located in & dynamic-link library
(DLL) containing one or more routines that are compiled,
linked and stored separately from the programs using them
{Petzold, 19921, These DLL’s can be loaded dynamically by
a program, which is then able to directly access routines
contained in the DLL. Source code from most procedural
programming languages ie. C, PASCAL, COBOL,
FORTRAN and BASIC can be recompiled as a DLL with
little or no source code changes. Legacy models available as
source code can therefore be recompiled as a2 DLL and be
mtegrated into a OO model by loading and accessing at
runtime. Because access to a DLL is via routines, essential
operations of a model must be implicitly contained in caliable
routings, Global variable declarations in the procedural
source code are maintained during recompilation but they are
not direcily accessible. The recompiling of legacy models
into a DLL, and the subsequent loading of a DLL by an OO
program at runtime, provides a mechanism by which an OO
model can utilise a legacy component model.

Lagacy Component 00 Modeal

DLL

Figure 3: A single DLL exhibits non-encapsulated behaviour
when more than one instance references the DLL. Each
instance in the OO0 mode] has the potential to independently
modify global variables i the DLL.

In the OO model a class is developed, instances of which
interface to a DLI.. Only one application instance of & DLL
can be loaded into memory at any one time. If more than one
instance interfaces to such a DLL unpredictable results may
occur since variables in the DLL., changed by one instance,
can affect subsequent calculations invoked by routine calls
from other mstances {Figure 3). Hence if more than one

instance 15 to interface to a legacy model DLL which
‘maintains state’ i the form of global variables, a unigue
DLIL. must be created for each instance which requires it
Only one instance is then able to modify a global variable in
& DLL, thus encapsulating the behaviour of the DLL within a
single instance in the OO model {Figure 4). The creation of
multiple DLL files can either involve the manual creation of
a DLL repository, or be implemented through code in the OO
program.

Legacy Companerd Q0 Modet
~ F
TN
o7 Class N
Ve k
/ !
Copied and // |\
Renamed DLL's
/ a \
—_— 1
/ / { !
LLt §
% nstance ,—1\ [é
Nood | i
Ruulma T "—"[) / [
i A
M\\DLLZ \
Y vaf}ables ‘\ \ Instance H
fouting 4 ;1 S *fﬂ—{ } /
““““ - _// [[j[
* ’f variahlas .- ‘\ Instance //—H\ /j
y
\ Rauting =
\M

L

Figure 4: When each instance has 2 unique copy of the DLL,
the DLL s exhibit encapsulated behaviour as variables in any
DLL can only be modified via calls from a single instance.

2.3 Interprocess Communication

Interprocess communication {IPC) is the exchange of data
between processes simultaneously ioaded into computer
memory. A process i$ an executable application loaded into
computer memory. [t consists of a unique address space, a
data segment and reference to a shared code segment

[Microsoft, 1995b]. IPC is supported by multi-tasking,
window based operating systems and covers several
mechanisms: intermediary data protocols such as the

clipboard. dynamic data exchange (DDE) and file mapping,
through to direct data transfer mechanisms such as Sockets,
Pipes and obiect linking and embedding [Microsoft, 19571,

To use TPC as an integration methodology a class is
developed in the OO model such that its instances implement
an IPC conversation with a legacy component model
Following instance creation the legacy model is loaded into
compuier memory using an operating systemn call to initiate a
process. A conversation is then established between the
process and the instance in the OO model. In operating
systems that support the creation of multiple application
instances from a single executable file it is possible to load a
separate copy of a legacy application for every instance that
is to communicate with it. Application instances have unique

1136

variable storage which means that when a unique instance
interfaces with a legacy model in this form it can be utilised
as a true object (Figure 3).

The clipboard provides one mechanism for the exchange of
data between ail applications running under a window based
operating system. It is primarily designed to facilitate user
controlled exchanges of data between application interfaces.
Programmatic window manipulation, messaging and virtual
key stroke generation, however, allows the clipboard to be
used dynamically by one computer program to control and
obtain data which is available from the interface of another
program. Legacy models that can be executed under window
based operating systems can therefore be incorporated into an
00 model. These include models that are anly avaijlable as
compiled and linked executable programs, models developed
as part of a proprietary modelling enviroament, medels
which are not suitable for recompiling as & DLL, or models
nof suitable for mixed language programming.

Legacy Component

[Logaey Vo \\

| Model | s

,,,,,,,,,,,,,,,,, / L

L!nsiam‘.e /

p!:c.mm;
Iﬂ stance)‘_

instanco [IPRI.

instance

r———,

—
f] \ instance
K Application
insta: e S e e e
. nce)., < —

\-_/———/ ‘/J

\\//
Figure 5: Each instance in the OO mode} has an exclusive

link to a corresponding application instance of a legacy
model.

Some proprietary modelling environments have support for
more direct modes of IPC data transfer. ACSL for example
[Mitchell and Gauthier Associates, 1995] can act as a DDE
server which responds to input commands and requests for
data from a separate client application. More direct IFC
mechanisms are preferable {0 using the clipboard in
combination with virtua} key stroke synthesis and window
manipulation because they are easier to implement and are
not restricted to data and inputs available via the interface.
Models that are available as source code can have a more
direct [PC introduced directly into the source code.
However, the IPC mechanism chosen depends upon the
detail of how the model is to be implemented. To improve
model execution times, computationally intensive legacy

model components may be better executed on a different
networked computer. IPC methods such as DDE, Pipes and
Sockets allow for seamless distribution as the communication
protocols are the same between applications running on 2
single computer or on networked computers. The
implementation of a partcular [PC mechanism s
programming language dependent, a fact which may restrict
the data exchange protocols that are able to be used, Mixed
language programming can, however, expand the IPC
mechanisms that are able w be incorporated into legacy
source code.

3. ACTUAL IMPLEMENTATION OF
INTEGRATION PROCEDURES

in our development of an OO dafry farm system computer
mode] [Sherlock et al, 1997], two procedural legacy
computer models were identified as having functionality
required by objects in the OO model. A FORTRAN model
[MeCall, 1984] contained the required pasture growth
functionality while an ACSL cow medel, MOLLY [Baldwin,
1995], provided the required bovine digestion and
metabolism functionality. The integration strategies used
were chosen to allow individual cows and paddocks 10 be
described in the QO dairy farm model.

341 Integrating a FORTRAN Source Code Mrdel
into a Smalitalk 00 Farm Model

The version of Smalltalk [VisuaiWorks (ParcPlace-Digitalk},
19951 used to develop the OO model only supported the
calling of C modules ecither as part of a (/Smalktatk mixed
language program of through loading and accessing routines
in a DLL. This environment had no capacity to directly
interface to FORTRAN which meant direct incorporation of
the legacy FORTRAN model was not possible. Because the
building of a mixed language program was possible using ©
and FORTRAN source code {Microsoft, 19952, 1995b] it
was possible to “wrapper’ the FORTRAN cade to behave as a
C module, In a CFORTRAN mixed language program,
routines in the FORTRAN code can be declared as functions
in the C code by prefixing the function declaration using a
* stdcali’ keyword, which forces the routine to be called
pushing associated parameters left ro right. This is how
parameters must be passed to FORTRAN routmes. The
additional declaration of extern “C” tells the compiler that the
routine is defined outside the current text file:

C code:

extern "C" woid _stdcall DRIVER (double CLIMAT () (7]
int *inputDAY, double *FRAD, double *METLAT, double
«TEME, doukle *METALT, doubls *2LT. double
#TEMPEROE] ; J*PORTREAEN subroutine
declaration in C =/

1137

FORTRAN code;

SUBROUTINE DRIVER (CLIMAT.inputDAY PRADMETLAT PTEMP,
METALT, ALT, TEMPPROP) 1The actual FORTRAN subroutine

The FORTRAN routines are then able to be called froma C
program as if they were T functions. ie. the wrapping
procedurs produces C functions which mirror the FORTRAN
routines. The calling of these proxy C type functions from
VisualWorks Smatltalk using an external interface subclass
[ParcPlace-Digitalk, 1995] therefore provided access to the
FORTRAN model. The FORTRAN/C mixed language
program was compiled inte a DLL [Petzold, 1992]. The
proxy function calls existing i the C code were specified to
be exported during the DLL build, which enabled them to be
externally visible and therefore cailable from Smalltalk.

The OO farmm system mode! consisted of multiple paddock
objects so to represent the unique growth parameters and
states of individual paddocks it was necessary to create an
instance of a pasture growth model for each paddock object
in the simulation model. This was achieved through the
creation of a file repository of uniquely named DLL’s from
which a unique DLL was loaded into memory for each of the
paddock objects instantiated at runtime (as described in
Section 2.2).

32 Integrating an ACSL Model inte a Smailialk OO
Farm Model

ACSL is a proprietary modelling environment which
compiles and links code which is subsequently executed in a
proprietary runtime window. The runtime window provides
DDYE server capabilities, responding to input tnstructions and
data requests {rom other applications leaded into memeory
[Mitchell and Gauthier Associates, 1993). VisualWorks
Smallralk {ParcPlace-Digitalk, 1995] contains base classes
that can utilise the Microsoft Windows dynamic data
exchange management libraries (DDEML) that allow the
creation of DDE server or DDE client objects, DDE
therefore provided a mechanism for the mclusion of the
ACSL cow model into the OO farm system model. In the
00 model a DDE client class was developed whose instances
would interface directly to a unique MOLLY project,
Because a real dairy farm is composed of many different
cows, it was desirable to create many separate cow objects in
the OO0 model. ACSL supports the simultaneous running of
different projects so this was possible by the creating and
utitising of a repository of MOLLY projects, each accessed
via an exclusive DDE chient instance.

4. COMCLUSION

It 15 possible to integrate existing models in a variety of
languages and environments into an OO model so that they
behave as true objecis in the GO model. However, this is not
readily achieved using mixed language programming alone

due to the restricted subset of OO/procedural mixed language
programs that can be buili, and the class variable behaviour
exhibited by global variables in the legacy model. Mixed
language programming can, however, play an important part
inx the successful adeption of DLL and IPC techniques.

Recompiling legacy model source code into a DLL provides
an integration method that allows legacy models o behave ag
true objects in the 00 model. provided that key functionality
is contained within callable routines and that for each
mnterfacing instance there is a unigue DLL. Depending on
the type of interfacing supported by a specific OO0
programming environment, it may be necessary to “wrapper’
the legacy code wusing mixed language programuming
techniques to allow the legacy model’s functionality to be
accessed.

Interprocess communication (IPC) provides versatile
integration options and all existing models can in principle be
incorporated into an OO0 medel using these techniques. This
inciudes models available only as an executable application,
as the clipboard at least can be used as a default data
exchange mechanism. The introduction of more direct 1PC
mechanisms into models available as source code generally
allows easier and more {lexible intepration procedures.
Mixed language programming technigues may, however,
have to be used to introduce the desired IPC mechanism. An
OG instance implementing an [PC conversation can interface
to a unique application instance, which means the legacy
model is able to exhibit trae object data encapsulation.

5. ACKNOWLEDGEMENTS

The authors would ke to thank Mike Maguire and Leigh
Roberts for their valuable advice on detailed aspects of
VisualWorks Smallialk. This work was supported by the
New Zealand Foundation for Research, Science and
Technology.

6. REFERENCES

Advanced Centinuous Simulation Language {ACSL) User
manualrefereace. VFersion {10 Michell and
Gauthier Associates Concerde, 362pp., M4, 1995,

Baldwin, R. L., Modeling Ruminant Digesdon and
Metabolivm, Chapman and Hall, 578pp.. London,
1995,

Booch, G., Object-Oriented Analysis and Design. The
Benjamin/Cummings. 58%pp.. Redwood City, CA.,
1994,

Fishwick A.. Simwlarion Model Dexign and Execution:
Building Digital Worlds, Premtice Hall, 448pp.,
Englewood Chiffs, NJ, 1995,

1138

Goidberg, A. and Robson, D., Smalltalk-80 ~ The Language,
Addison-Wesley, 585pp., Reading, MA, 1989,

Petzold, C., Programming Windows 3.1, , Microsoft Press,
983pp., Redmend, WA, 1992.

Plant, R, E. and Stone N. ., Knowledge-Bused Systems in
Agriculture, McGaw-Hill, 259-287. New York, NY,
1991,

McCall B, G., 4 Systems Approach to Research Planning for
North Island Hill Country, PhD Thesis, Massey
University, NZ, 1984

Mever, B.. Gbject-Oriented Software Construction., 2nd Bd
Prentice Hall, 1250pp.. Englewcodl Cliffs, NI,
1997,

Microsoft FORTRAN PowerStation. Books Online. Version
4.0, Microsoft Corporation, Redmond WA, 1995a

Microsoft Software Development Kit Documentation
http://premium.microsoft.com/msdn/library/,
Redmeond, WA, 1997

Microsoft Visual C++. Books Online. Version 4.0, Microsoft
Corporation, Redmond, WA, 1995b

Sherlock, R. A.. Bright, K. P and Neil, P. G.,, An Object-
oriented simulation model of a complete pastoral
dairy farm, in McDonald, A.D., Smith, A.D.M and
McAleer, M (Eds) MODSIM97; Proceedings of the
International Coaference on Modelling and
Simulation, Meodelling and Sirmulation Society of
Australia, Hobart, Dec 1907,

VisualWorks DLL and C-Connect User s Guide, Rev 1.2,
ParcPlace-Digitalk, 266pp., Sunnydale, CA, 1995,

